TITAN VII
we have started to develop a mobile robot which can play a role
as a mobile platform on the rugged and steep slope under
construction. For the basic structure, we selected the walking style,
because it can avoid obstacles and the leg can be also used as
a powerful manipulator. And we adopted a quadruped, because
four is the minimum number of legs to achieve a statically stable walk.
http://www-robot.mes.titech.ac.jp/robot/walking/titan7/titan7_e.html
Hyperion
construction. For the basic structure, we selected the walking style,
because it can avoid obstacles and the leg can be also used as
a powerful manipulator. And we adopted a quadruped, because
four is the minimum number of legs to achieve a statically stable walk.
http://www-robot.mes.titech.ac.jp/robot/walking/titan7/titan7_e.html
Hyperion
The character of Hyperion is, first, that it has only 3 DOF and
is very light. Usually, a multipedal robot has 3DOF per leg, but
Hyperion uses the least DOF needed for static walk.
The first plan was to have 4 DOF, as shown in Fig
more
Roller-Walker
PROLERO is a PROtotype of LEgged ROver, also known as
WAlking RObot for Mars Applications (WAROMA). The concept
of WAROMA was developed in the ESA A&R group and a prototype
of it was built by PROLERO Industries (NL) on ESA contract.
is very light. Usually, a multipedal robot has 3DOF per leg, but
Hyperion uses the least DOF needed for static walk.
The first plan was to have 4 DOF, as shown in Fig
more
Roller-Walker
Leg-Wheel Hybrid Walking Vehicle
there are many studies about leg-wheel hybrid mobile robot
because walking robot has high terrain adaptability on irregular
ground but wheeled robot takes advantage of moving speed
on smooth terrain. In the past, active wheels were often used
for wheeled locomotion. However installation of active
wheels restricted walking machine's ability very much. Because
active wheels need actuators, brake mechanism and steering
mechanism. This equipment is so heavy and bulky that
it's not practical solution for walking robot which has many
degrees of freedom. Proposed hybrid mobile robot named
"Roller-Walker" is a vehicle with a special foot mechanism
which changes between feet soles for the walking mode and
passive wheels for the wheel. (Photo 2(a),(b)) Roller-Walker
can utilize the installed actuators for walking, so additional
weight is very light. The wheeled locomotion is based on the
same principle of roller-skating. more
there are many studies about leg-wheel hybrid mobile robot
because walking robot has high terrain adaptability on irregular
ground but wheeled robot takes advantage of moving speed
on smooth terrain. In the past, active wheels were often used
for wheeled locomotion. However installation of active
wheels restricted walking machine's ability very much. Because
active wheels need actuators, brake mechanism and steering
mechanism. This equipment is so heavy and bulky that
it's not practical solution for walking robot which has many
degrees of freedom. Proposed hybrid mobile robot named
"Roller-Walker" is a vehicle with a special foot mechanism
which changes between feet soles for the walking mode and
passive wheels for the wheel. (Photo 2(a),(b)) Roller-Walker
can utilize the installed actuators for walking, so additional
weight is very light. The wheeled locomotion is based on the
same principle of roller-skating. more
PROLERO
PROLERO is a PROtotype of LEgged ROver, also known as
WAlking RObot for Mars Applications (WAROMA). The concept
of WAROMA was developed in the ESA A&R group and a prototype
of it was built by PROLERO Industries (NL) on ESA contract.
No comments:
Post a Comment